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I. ABSTRACT

The improvement of cathode performance in primary organic electrolyte
batteries by conversion of the active material to an electronic semiconductor
was investigated in this program. A series of n-type cadmium fluoride single
crystals was prepared by a two-stage high-temperature doping process. Initial
effort: to prepare n-type manganous fluoride by analogous procedures did not
yleld a conductive material. The cadmium fluoride crystals were characterized
by the measurement of bulk and contact resistivities, using indium amalgam
contacts. The crystal specimens were then examined electrochemically by
cathodic discharge at constant current density in a lithium perchlorate -
propylene carbonate electrolyte.

An electronic mechanism for the discharge of n-type cadmium f{luoride was
confirmed by the observation of cadmium deposition at the semiconductor/
electrolyte interface. An undoped crystal was inactive whe< examined in the
same electrode configuration. Two problems were encountered in the use of
semiconducting cadrium fluoride as a cathode material: (1) passivation of the
crystal surface, and (2) a requirement for careful preparation of the contact
between the semiconductor and the external circuit. Recommendations for
future work include investigation of the passivation process and means for its
control, comparison of reaction rates for electronic and other discharge mech-
anisms, and continued efforts to prepare semiconducting transition metal

halides.
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1i. IN12XOLDUJTION

High-energy cathode materials U'al :an be discharged rapidly in organic
electrolytes are needed for the improvement cf batteries utilizing lithium
anodes., Transition metal f{luorides and chlorides have been investigated for
this purpose cver a pericct cf several years, Cadmium fluoride has received

2
(1,2) In their usual forms, these sclids have low

more recent attention,
electrical corductivities; the discharge process within A typical perous elec-
trode structure apparently involves dissolution of the metal ion and its
transrort through the solution, fellewad by charge traisfer at the surface of
an inert current collector such as carbon. In this program, electronic <on-
duction was introduced into the solid ralide phase to provide an additional
discharge mechanism and a corresponding iwprovement of cathcde performance.
The [irst phase of the prograr was a study of n-type cadmium fluoride,

(3,4)

for which preparation methods were available. Trhe second phase was an
effort to prepare and evaluate a now semiconducting system from a selected
transition metal fluoride or chlcride. Zvidence in support of the electronic
reduction mechanism wasn obtained with powdered cadmium {luoride cathodes dur-
ing the irnitial contract zear. ) in the second year, covered by this regport,
the cadmiur flucride study was exiendec, using single-crystal ealectrodes, and

the preparation of n-type manganous fluoride by analogeus doping methods was

expiored.




III. EXPERIMENTAL

The experimental activities consisted of: (1) materials preparation,
including the growth of doped single crystals of cadmium fluoride and mangan-
ous flueride, (2) bulk and contact resistivity measurements on the doped cath-
ode materials, and (3) determination of constant-current discharge curves for
single-crystal cadmium fluoride electrodes in a lithium perchlorate - propylene
carbonate electrolyte. Experimental details are given below.

A.  MATERIALS

1. High-Purity Chemicals

Preparation of the 1 M LiCth solution in propylene carbonate from

purified materials was described in the first scientific report on this pro-
3

gram.(l’ Argon used in distillation of the solvent was > 99.99% pure. The

working anode and reference electrode were of solid lithium, 99.97% pure,

obtajined from Foote Mineral Co.

Z. Single Crystals

The single crystals used in this work were prepared at the North Ameri-
can Rockwell Science Center,

a. Cadmium Fluoride

High-purity cadmium fluoride was obtained in powder form from the
Chemical Products Plant of the General Electric Co. in Cleveland, Chio. Start-
ing material from this scurce had been used successfully in several earlier

(3,5)

investigations of rare earth-doped cadmium fluoride. Before crystal
growth was attempted, the starting material was dried in anhydrous hydrogen
fluoride at 400 to 670°C for a period of 12 to 24 hr. fhis procedure also con-

verted any oxide that might have been present to the fluoride,

—2-




A seriea of cadmium fluoride crystals containing yttrium fluoride
at concentrations ranging from 0.0l to 1 mole ¥ was prepared by the Bridgman

(6)

closed ¢rucible method. An undoped crystal was grown in the same way.

(Initial growth attempta were made by the Czochralsid crystal pulling tech-
nique,(s) but this methed was discontinued because of nonuniform diameter
growth.) The detailed procedure with the Bridgman method was as follows. The
dried material was placed in an iridium crucible under helium, heated by in-
duction until it was completely melted, and homegenized if a dopant was present.
No yellow coloration waa noted at any time during these steps until the cadmium
fluoride was in the molten atate; the starting material was thus relatively
pure. The melt waa then quenched and the resulting solid crushed ana placed
in & clomed graphite crucible which had previously been baked out at 1200°C
under vacuum for 1 to 4 hr., The crucible was lowersd through an induction
heating furnace uaing the Bridgman technique at a rate of 0.4 in./hr while
rotating at 3 to 8 rpm. In general, the cryatals were of good quality, trans-
parent, and free of atrain, with weighta ranging froe 20 to 20 g.

The doped cryatals were cut perpendicular to the growth axis with
a thin-aectioning aaw into slices approximately 1 mm thick, uaing a keroaene-
carborundum slurry sa a cutting medium. The alicea were washed in benzene,
poliahed on an abrasive stone, etched in 1:1 hydrochloric acid, and sealed
into evacuated quartz or Pyrex tubea, along with amall piecea of cadmium metal.
Heating for meveral minutea at 500°C produced the blue coloration character-
iatic of aemiconducting cadmium fluorido.(7) The colored apecimens were
re-etohed in hydrochloric acid to remove the undoped layer which was known to

form on the surface during cadmium exposure. Further treatmenta were applied,

as indicated in Section III-B, to produce the deaired electricel contacta.

=i




b. Manganous Fluoride

Manganous fluoride crystals doped with scandium, yttrium, and
lutetium fluorides were grown by a similar procedure from starting material
supplied by Electronic Space Products, Inc. of Loo #ngeles. The nominal
dopant concentrations were 0.1 and 1 mole % Sc(II1), 0.1 mole ¥ Y(III), and
0.1 mole ¥ Lu(III). The preparation containing 1 mole ¥ Sc{11I) was exten-
sively cracked, and some similar difficulty was encountered with the lutetium-
doped material. Good crystals were obtained in the other cases. Initial
efforts to prepare a semiconducting manganous fluoride were made by treating
crystal fragments containing 0.1 mole ¥ 5¢(II1) with lithium or sodium vapor.
Exposure conditions were varied from 15 min at 250°C to 1 hr at S00°C. Appre-
ciable conductivity has not yet been produced in the manganese system.

B.  SQLID-STATE MEASUREMENTS

1. Cadmium Fluoride

The four-termiral dc technique illustrated in Figure 1 was used to
determine both bulk and contact resistivities of the cadmium fluoride crystals.
Constant current densitiea ranging from 0.05 to 35 ma/cma were passed between
the ends of the crystal through terminals F and G by means of a 45-volt
battery and a dropping series resistor. Connections from the amalgam contacts
to the external cvircuit were made with the assistance of a four-element micro-
manipulator assembly. Potential differemces between the varicus contacts were
determined with a Leeds & Northrup K-3 potentiomuter.

The bulk resiativity, p, waa calculated from the equation

n=—E—°RS'T- (1)

.




AMALGRM

6-24-69 UNCL 5086-4016

Figure 1. Arrangement for Four-Terminal Resistivity Measurements




where EH-I represents the potential difference between the probes at terminals
H and I, Es is the potential drop across a standard resistor, Rs‘ in series with
the crystal, and b, ¢, and d are the dimensions indicated in Figure 1. With
this arrangement, the bulk resisiivity measurement was not ordinarily influenced
by the relatively large potential drops across the current-carrying boundaries.
Interference with the potential measurement between the probes which was noted
occasionally at very low or zero current density mey have been due to

thermal effects. Under favorable conditions, however, the least accurate
quantity in equation 1 was the interprobe spacing, d, which was known to about
20%. The contact resistances were examined at the same current densities by
switching the potentiometer to positions F-H and I-G.

Metal contacts consisting of indium (applied by fusion), indium amal-
gam, and a low-melting indium solder* were investigated in preliminary experi-
ments, A 50 wt % indium amalgam proved more satisfactery than the other
materials, both mechanically and electrically. The amalgam was therefore used
to obtain the detailed data that are given in this report. Acid-etched cad-
mium fluoride surfaces produced poor contacts. Further c¢leaning with organic
solvents, including methanol and carbon tetrachloride, was tried, with little
success, but benzene gave more satisfactory results., The amalgam contacts
usually improved on standing overnignt, probably due to the gradual penetra-
tion of crevices.

2. Manganous Fluoride

All of the manganous fluoride crystals had resirtances greater than

lO9 ohms. The small sizea and irregular shapes of some of the chemically-

treated specimens prevented effective use of the four-terminal technique.

*50% In, 50% Sn, m.p. 116°C, from Electronic Space Products, Inc.

-6~




Dimensions were of the order of 2 to 5 mm. The total crystal resistance was
obtained by a two-terminal measurement, in which the arrent through the
cryatal was evaluated from the ohmic drop measured across a comparatively

5

small series resistance of 10“ to 10 ohms. The crystal resistaunce, which
was essentially that of the entire circuit, was then available from this cur-
rent and the known battery voltage. Contact resistances are thus included in

the data reported for manganous fluoride.

C.  ELECTROCHEMICAL MEASUREMENTS

Instrumentation for the recording of potential-time curves at constant
current and for estimation of the ohmic drop correction was described previ-
oualy.(l)

The modified electrochemical cell used with the single-crystal cathodes
is illuatrated in Figure 2. The firat crystal electrodes {Runs 1 and 3) were
constructed in a polystyrene frame so that a flat surface, cut perpendicular
to the growth axis, was exposed to the electrolyte. This mounting proved to
be mechanically unstable; it was replaced in subsequent runs with the epoxy
type shown in Figure 3. The exposed area was then on a freshly-cleaved and
slightly uneven surface, essentially parallel to the growth axis. The
detailed electrochemical sequences are indicated in Section IV,

The solution resistance between the cathode and reference electrodes was
not directly measurable by the pulse technique used previously for carbon

(1)

paste electrodes because of the blocking space-charge capacitance in the
semiconductor crystal. Pulse measurements in which a copper electrode of
similar size was substituted for the crystal indicated negligible -wlution

ohmic drop at the current densities employed in the discharge measurements,
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IV. RESULTS AND DISCUSSION

The results of the program are discussed in this section, with attention
to three requirements for implementation of the semiconductor approach to
battery cathode improvement. These requirements are: (1} a means for con-
version ol the selected oxidizer to a semiconductor, (2) formation of a low-
resistance contact from the semiconductor to the external circuit, and (3) a
rapid, unhindered electrochemical discharge process at the electrolyte inter-
face. This investigation dealt with each of these requirements for the cad-
mium fluoride system; it will be seen that some further study of the discharge
process is needed in this case. For the transition metal halides, the prodvec-
tion of semiconducting materials has been explored on a preliminary basis but
has not yet been accomplished.

A. FORMATION OF SEMICONDUCTING HALIDES

1. General Guidelines®
Most, if not all, of the halides of interest in this program are

insulators in the pure state. Cadmium fluoride, for example, has an energy

(7 7 ohmecm. 3!

gap of 6 ev and a room temperature resistivity of approximately 10

A dopanrt that will act as a simple donor or acceptor in such a system is not
easily found. The formation of n-type cadmium fluoride by the two-stags
process of Prener and Kingsley involves:(B)
1) Substitution of a trivalent cation for Cd'' in the CdF, lattice,
with the consequent formation of an in.erstitiel F
2) Migration of interstitial F~ at high temperature to the outer

surface of the cryatal where a reaction occurs with cadmium atoms:

2F 4+ cd ~ CaF, + 2e

‘Nggations used in thia aection are: MX, for the halide of a divalent metal,
M " for the corresponding hoat crystal cation, X for the host anien, F for
fluoride ion. The other chemical symbols are conventional.

=10~




A thin layer of undoped cadmium fluoride forms on the surface, and an equiv-
alent number of electrons are released to the interior of the crystal. Opti-
cal spectra show that these extra clectrons do not reduce the trivalent ions
when a conduciing system is obtained but instead remsin in a delocalized

(4)

state. ESR spectra indicate, however, that some interaction between the
extra electron and the Jdopant ion may occur.(s) Stabilization of the conduct-
ing system apparently depends on the presence of a number of nearest cation
neighbors surrounding each trivalent ion. Thus, in cadmium fluoride, which
has a face-centered cubic lattice, each substituent cation is surrounded by
12 nearest ca** neighbors at a distance of 32.81 R. This environment facili-
tates an exchange of the type
cd™ +ca” ~cat 4 catt

involvirg the cadmium 5s state. The resulting "impurity" band is believed to
be responsicle for higl. electron mobility and strong infrared absorption by
the semiconductor.(h)

From this knowledge of the cadmium fluoride system, certain criteria
for the analogous formation of other semiconducting halides of the type an
may be specified. Other doping methods are not to be excluded, but the Prener
and Kingsley approach,outlined above, has been the one applied to date in this
investigation. Requirements for -iccessful doping by that method may be summar-
ized as follows:

1) A trivalent cation of size near that of M'' or smaller should be ‘

available to substitute in the crystal lattice,

2) The impurity cation should be stable in the +3 oxidation state.

o
It ehould not be reduced by M or oxidized by H' '.




3) The impurity ion should not ccordinate with X~ to an exteat that
interferes with its mobility at high temperature.

k) The lattice of the host crystal should have enough open space to
form X~ interstitials.

5) The cation latiice should be capable of stabilizing the extra
electrons that compensate for lost X . A large number of Mt
neighbors should surrcund each cation site with a symmetry
favoring elsctron exchange. However, deep trapping of electrons
on the host cations should be aveided.

For the transition metal halides, Conditions 1 and 2 are likely to
be met by dopant cations such as 5¢777 and 41%*Y.  Condition % suggests the
choice of F, rather than Cl~, as the crystal anion. Conditions % and 5 are
dependent on crystal structure and on the electron affinities of the host and
impurity cations. Cupric ion in the role of A may trap electrons too
strongly, with a resultant low carrier nmobility, but the extent of this prob-
lem has not been determined. The other cations of interest have no pronounced
tendency to form M.

Seme crystal properties of cadmium flucride and a group of transition
metal halides which pertain to Cenditions 4 and 5 are given in Table 1. In
arriving at the last column of this Table, it was assumed that a prospect for
interstitial anions exists when the free volume per molecular unit, MX_,
exceeds the velume of the anion computed from its crystal radius. This cri-
terion is easily met for Csz. MnFZ. and CuF_., Marginal cases are found in

2

CoF2 and NiFa, and none of the chlorides appears likely to form interstitials.

The fulfillment of Conditien 5, for electron stabilization, is more difficult
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to predict. In the tetragonal HnF2 cerystal, for example, each cation site
hae 8 Mn'" neighbors at a distance of 3.82 A and 2 at 3.3 k. To compare
extra electron stabilization in this slightly flattened structure with that
in the nearly-spherical cation environment of Csz, one should consider the
sizes and shapes of the orbitals involved, whether 2d or 4s in the case of
MnFa, and their interactions with the anion lattice, as well as the electron
affinities of host and impurity cations, The related question of intrinsic
conduction in transition metal halides, oxides, and sulfides was treated by
Morin, who correlated the wide-ranging electrical properties with orbital
overlap integrals.(la) The scope of the present program did not provide for

a quantitative theoretical analysis of the doping problem.

2. Initial Results for Manganous Fluoride

The results of initial experimental efforts to prepare n-type mangan-
ous fluoride by the Prener and Kingsley approach are summarized in Table 2.
It was noted previously that this compornd should be capable of forming F~
interstitials. As a battery cathode material, manganous fluoride offers a
theoretical energy density of 495 whr/lb, compared to 399 whr/lb for cadmium
fluoride. Alkali metal vapors were used in the reduction stage, rather than
manganece, because the vapor pressure of the latter is too low for an effec-
tive conversion process. Pyrex containers :eacted with the alkali metals to
some extent, out quartz tubes were found to be satisfactery. During the more
intensive exposures, the crystals became coated with » dark layer, presumably
of manganese metal. When this layer was etched away, however, the measured

9

crystal resistance remained higher than 10 ohmi in all cases. The slightly
lower values observed after 1 hr in sodium vapor at 500°C may be significant.

Further work on the doping of manganous fluoivide by *his approach is recom-

mended.
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Some difficulties were ercountered earlier irn the preparation of
n-type cadnium fluoride from polycrystalline material.(l) The blue semi-
conductor was casily produced from the yttrium-doped single crystals, however,

as indicated in the next section.

B.  RESISTIVITIES OF CADMIUM FLUQRIDE CRYGTALS

The bulk resistivity of the cathode material was needed to ectablish its
influence on the electrochemical discharge mechanism. It is also apparent
that the contact resistance at the current collector interface must be mini-
mized, i{ the performance capabilities of a doped cathode system are to be
fully realized. The bulk and surface resistance terms were resolved experi-
mentally by the four-terminal measurements on the cadmnium flucride crystals,
with the results indicated in the following paragraphs.

1. Bulk Resistivity

Bulk resistivities for the series of yttrium-doped cadmium fluoride
cerysials are included in Table 3. Detailed data for six crystals are given
in the Appendix (Table 6}, The observed resistivities are consistent with
the 1 ohm-cm magnitude reported for a variety of similarly-doped cadmium
fluoride systems contairing 0.l mele » rarc earth or ytirium ions.(q)

In the present work, the dependence of the bulk resistivity, g, on
depant concentration appears to have been obscured somewhat by cther factors,
possibly nonuniform therial treatment during crystal growth or cadmium
exposure. A ten-fold variation of o was nevertheless cbserved within this

series. The highest resistivity, 3.2 ohm-cm, was obtained by lowering the

cadmium exposure temperature from 530 to “UeC.

-lb-
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2. Contact Resistivity

The contact resistivity, reported in Table &, is defined as the
ratioc of interfacial potential drop to current density and may be expressed
as ohm-cma. This "resistance" does not always behave as a simple ohmic cir-
cuit element at metal-semiconductor contacts. In idealized systems, recti-
fication effects are predictable from the work functions of the two solids.

In real systems, however, the work function contributions are usually
obscured by those of barriers consisting of adsorbed materials, surface
impurities, and the like. Such was the case in the present work.

The results of the contact resistance investigation are summarized
graphically in Figures 4 and 5. The symbols F and G denote the potentials
of the respective interfaces, measured against the nearest probe. Two
tendencies were apparent from the outset with the chemically-cleaned surfaces:
(1) rectification occurred with a directional characteristic opposing cathodic
discharge, and (2} the two ends of the crystal responded in a similar manner
with the same current polarity; it was not difficult to produce a fairly
uniform surface, although the interfacial resistivity was high enough to cause
a serious power loss in an electrochemical cell. These features are evident
in Figure 4 at 0.0l mole ¥ yttrium. When this crystal was freshly cleaved,
the contact improved significantly and began to appreach chmic behavior.
Finally, as shown in Figure 5, an ohmic contact was achieved on a freshly-
¢leaved 1 mole ¥ crystal. The contact resistivity then dropped from the
range of 10 to 1000 ohm-—cma to a consiatent 0.3 ohm«cma, independent of the
magnitude or direction of the current. These results point to surface con-
tamination, rather than intrinsic work function differences, as the principal

cause of the contact resistance.
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C.  CATHODIC BEHAVIOR OF L-TYPE CADMIUM FLUORIDE CRYSTALS

Chemical and physical characteristics of the crystal specimens used as
electrodes are given in Table 3. Detailed electrochemical sequences and the
corresponding data are recorded in Table 4, Table 5 provides a summary of
the results. Several features of the crystal electrode behavior are dis-
cussed below.

1. Open-Circuit Potential and Initial Polarization

The calculated equilibrium potential for the cell Li/LiF(s)/Csz(s)/Cd
is 2.70 v. Initial open-circuit potentials determinred experimentally on the
doped crystals were 2.4 to 2.6 v vs Li/Li+(l M) while a value of only l.73 v
was recorded on the undoped material.

Preliminary discharges of 1 min duration were made on each of the
doped crystals at 0.1 and 0.2 ma/cma. to compare initial polarizations and to
establish a suitable current density level for more prolonged discharge experi-
ments., The preliminary curves for 0.68 and 3.2 ohm-cm crystals are shown in
Figures 6 and 7, respectively. The initial polarizations were not excessive
under these conditions, and the cathodes recovered within several minutes on
open circuit to new potentials approaching the theoretical value. 1n these
measurements on crystals with good electronic conduction, the shapes of the
preliminary discharge curves were more responsive tu a two-fold increase in
current density than to a five-fold increase in bulk resistivity.

In contrast, the undoped crystal {(Run 5) failed to pass a current of
5 pa (0.1 ma/cma). even when 420 v was applied between the anode and cathode,
The resistance of this crystal waa known, from the sglid-state measurements,
to be > 3 x 10? ohms. Its behavior on attempted discharge was therefore not
surprising. This result confirms the absence of an electronic or solid-state

ionic reduction mechanism for undoped cadmium fluoride.
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2. Behavior on Prolonged Discharge

When cathodic reduction of a salt or oxide occurs by an electronic
mechanism, the corresponding metal is deposited at the semiconductor/electro-
lyte boundary.(l) With a solid-state ionic mechanism, the metal forms at the
boundary between the ionic crystal and the electronic current collector. A
dark layer of cadmium metal became visible on the outside of the cadmium
fluoride crystals when the discharge times were extended to several minutes.
No change was observed at the mirror-like amalgam confact. Upon continued
discharge, the cadmium deposit acquired a more metallic appearance. The dis-
charged electrode was remeved from the cell, washed in water, and dried.

The dark layer showed high conductance on a d¢ ohmmeter. Thus, the electronic
discharge mechanism was established for n-type cadmium fluoride.

The first continuous discharge curves for the doped crystals at
0.1 :r.a/cm2 are shown in Figures 8, 9, and 10. A discharge curve for cne of
the same crystals, re-cleeved, at 0.2 ma/cm2 is recorded in Figure 11. Two
processez are indicated by inflections near 1.0 and 0.7 v. Both transitions
are clearly visible in Figure 8 but are not as well resolved in the other
cases. The equivalent thicknesses of cadmium fluoride utilized at the trans-
ition potentials, calculated under the assumption of 100% current efficiency,
are given in Table 5. The energy densities were obtained by integration of
the potential-time curves to the indicated transition points. The utilization
thickness on a cleaved surface was 0.1 to 0.2 micron. Apparently, cathodic
passivation of the crystal surface oceurred when a layer of cadmiue flucride
about 200 unit cells in thickness had been reduced. Following the initial

discharge to 0.2 v (Figure 9)the cathode again recovered on open circuit to
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a potential above 2.0 v. Essentially no discharge capacity remained at this
stage, however, as illustrated by Figure 12.

Two passivation mechanisms may be readily envisioned--coating of the
erystal by an impervious layer of cadmium metal or of lithium fluoride. Fur-
ther experimental study will be required to distinguish between these, and
possibly other, passivation processes. The electrode was reactivated on
exposure to water, as indicated by recovery of the discharge capacity. This
effect is shown in Figure 13 for a 0.68 ohm-cm crystal. Although some of the
discharge capacity increase may have been due to surface roughening, the
restoration of cathodic activity was unmistakable, Whether this occurred by
the dissolution of lithium fluoride, or by water-induced detachment of the
cadmium metal from the underlying crystal, has not yet been determined.

3. Crystal Electrode Response to Anodic Current

The preparation of secondary cathodes by anadizing cadmium metal in
complex fluoride-organic solvent electrolytes has been reported by Shaw snd

HcClelland.(E‘lj)

Doped crystals of the type used in the present study will
not be reconstituted from the metal by ancdic charging. It was of interest,
nevertheless, to examine briefly the behavior of a discharged semiconductor

electrode under anodic current. The results are shown ir Figures 1% and 15.

At a charging current density of 0.2 ma/cma, the total cathode poten-

tial rose in 13 min to 8.7 v vs Li/LiCth(l M). Of tkhis final value, nearly
& v appreared to be a non-chmic component associated with the semiconductor/
electrolyte interface. This is indicated in Figure 14 oy the immediate drop

of 5.7 v with interruption of the charging current., The initial voltage step

in cathodic discharge at the come currenc immediately thereafter {Figure 15)
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was only C.25 v. This asymmetric behavior is not unexpected for an n-type
crystal, at which oxidations should be generally difficult because of the
tendency to form an exhaustion layer at positive potentials. In fact, high
electric fields have been deliberately created in n-type cadmium fluoride by
arcdic polarization of the crystal in a tetraethylammonium bromide-acetone

(1)

solution. The purpose was to study electroluminescence of the rare earth

dopant. Other investigators used a similar blocking contact between an elec-
trolyte and n-type cadmium sulfide to study tunneling processes in that system.(15)
In the present case, some discharge capacity in the cadmium fluoride potential
region did result from charging, but the anndic process occurred with low

energy afficiency.

D. IMPLICATICNS FOR PRACTICAL BATTERY CATHODES

Certain observations on the single-crystal electrodes may be used to esti-
mate the performance of porous cathode plates containing n-type caamium fluo-
ride as the active ingredient. Several correlations are made in the following
paragraphs.,

The electronic reduction mechanism offers an slternative reaction path for
cathodic discharge of cadmium fluoride. In a porous electrode, this route
created by doping the solid oxidizer may supplement or supplant another process,
such as the reduction of dissolved cadmium ion. To utilize the electronic
mechanism, however, one must provide a low-resistance contact at the semi-
conductor/current collector surface. Adequate contact at a cadmium fluoride/
carbon interface is unlikely, but this study shows that a metallic current
collector such as indium amalgam should be satisfactory. Good contacts were
much easier to vroduce on crystals containing 1 mole % yttrium than on those

with lower dopant concentrations,

-8



The passivation effect described in Section III-C-2 must be overcome or
mitigated in the development of practical semiconducter cadmium flueride elec-
trodes. Modification of the electrolyte by changing the cation or the solvent
probably offers the best approach to the solution of this problem. Alter-
natively, very small crystallites of cadmium flucride might be used.

In any compariscn of discharge characteristics for smooth and porous elec-
trodes, the relative surface areas must be taken into account. Attention must
be given to the initial particle size and area loading of the active material
as minimum considerations. The effects of plate thickness and porosity, and
resistivities ¢f the various phases present, should be included in a more
detailed analysis. Figure 16 shows the calculated ratic of current

densities (i /1 ) as a function of particle size for electrodes

projected *actual

containing cubic srystallites of cadmium fiuoride. The loading of active mater-
ial is indicated on each line in equivalents/cm® and in amp-hr/em®. A usuble
loading of 0.025 amp-hr/cm2 is typical of a hign-performance commercial battery
electrode such as silver, while a loading of 0.006 a.mp-hr/cm2 is representative

(16)

of an experimental silver chloride cathode in an organic electrolyte. Uni-
form current density throughout the thickness of the porous plate was assumed
in the construction of Figure 16. With that approximation, the current
density of 0.1 ma/cmz, which was used for discharge of the cadmium fluoride
erystals, would correspond to the projected current density of 1.8 ma/crn2 on a
0.0067 amp-hrﬂcma porous electrode if the particle size were 10 microns. With
a discharge capacity of 0.027 a.mp-hr/cm2 and the same particle size, the

corresponding projected current density would be 7 ma/cma. These comparisons

are based on areas cnly and do not reflect such factors as the decrease of
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Figure 16. Current Jensity Ratio for Cadmium
Fluoride Electrodes
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efficiency with plate thickness, or with passivation of the active surface.
If porous cadmium fluoride cathodes can be made to perform as well, on an
actual current density basis, as the crystal electrodes performed in this

study during the utilizatien of a C.1 te 0.2 micron thickness, a practical

energy density of 250 whr/lb would be expected, according to Table 5.
V. RECOMME:DATIONS FOR FUTURE WORK

The following studies are recommended for the contiruaticn cof this

research:

1) Investigation and control of cathodic passivation of cadmium flucrid=s
in organic electrolytes, in order tc increase the utilization
efficiency

Z) Comparative rate study of electronic and oiher dizcharge mecharisms

for cadmium fluoride, tc assess {urther the irnrovement in performance

that can be achieved by doping
5)  Continued effortes to produce and evaluate semiconducting transiticn
metal halides,to provide more active higher-energy cathode materials.
Vi. FEfS0INIL
Dr, M. M. iiicholson was the principal investigator for this progranm.

of the lorth American Wockwell Jcience Center, prepared the single crystals

and aissisted in writing SJection III-4 of this report.
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VIII. APPENDIX
Table & contains detailed data from which the bulk and contact resis-
tivities of six cadmlum fluoride crystals were evaluated. The results are

summarized in Table % and Figures 4 and 5.
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TABLE 6 (Continued)
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TABLFE 6 {Contlnued)
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